5-6W, Ultra-Wide Input Range DIP, Single & Dual Output DC/DC Converters

Key Features

- Efficiency up to 83%
- 1500VDC Isolation
- MTBF > 1,000,000 Hours
- 4:1 Wide Input Range
- Low Cost
- Complies with EN55022 Class A
- Temperature Performance −40°C to +71°C
- Industry Standard Pinout
- UL 94V-0 Package Material
- Internal SMD Construction

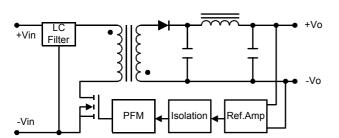
Minmax's MIW4100–Series power modules operate over input voltage ranges of 9–36VDC and 18–75VDC which provide precisely regulated output voltages of 3.3V, 5V, 12V, 15V, \pm 5V, \pm 12V and \pm 15VDC.

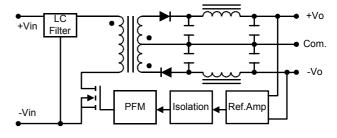
The -40°C to +71°C operating temperature range makes it ideal for data communication equipments, mobile battery driven equipments, distributed power systems, telecommunication equipments, mixed analog/digital subsystems, process/machine control equipments, computer peripheral systems and industrial robot systems.

The modules have a maximum power rating of 6W and a typical full—load efficiency of 83%, continuous short circuit, EN55022 Class A conducted noise compliance minimize design—in time, cost and eliminate the need for external filtering.

High Power Density

More Power





Block Diagram

Single Output

Dual Output

Model Selection Guide

Model Number	Input Voltage	Output Voltage	Output Current Inp		Input C	Input Current		Efficiency
			Мах.	Min.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA	mA (Typ.)	mA (Typ.)	mA (Typ.)	% (Typ.)
MIW4121		3.3	1200	120	220			<i>75</i>
MIW4122		5	1000	100	267			<i>78</i>
MIW4123		12	500	50	301			83
MIW4124	24 (9~36)	15	400	40	305	20	20	82
MIW4125	(3 30)	±5	±500	±50	267			78
MIW4126		±12	±250	±25	301			83
MIW4127		±15	±200	±20	305			82
MIW4131		3.3	1200	120	110			<i>75</i>
MIW4132		5	1000	100	134			78
MIW4133		12	500	50	151			83
MIW4134	48 (18 ~ 75)	15	400	40	152	10	15	82
MIW4135	(10 173)	±5	±500	±50	134			78
MIW4136		±12	±250	±25	151			83
MIW4137		±15	±200	±20	152			82

Absolute Maximum Ratings

Parame	Min.	Мах.	Unit	
Input Surge Voltage (1000 mS)	24VDC Input Models	-0.7	50	VDC
	48VDC Input Models	-0.7	100	VDC
Lead Temperature (1.5mm		260	${\mathscr C}$	
Internal Power Dissipation			2,500	mW

Exceeding the absolute maximum ratings of the unit could cause damage. These are not continuous operating ratings.

Environmental Specifications

Parameter	Conditions	Min.	Мах.	Unit	
Operating Temperature	Ambient	-40	+71	${\mathscr C}$	
Operating Temperature	Case	-40	+95	${\mathscr C}$	
Storage Temperature		-40	+125	${\mathscr C}$	
Humidity			95	%	
Cooling	Free-Air Convection				
Conducted EMI	EN55022 Class A				

Notes:

- Specifications typical at Ta=+25°C, resistive load, nominal input voltage, rated output current unless otherwise noted.
- 2. Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3. Ripple & Noise measurement bandwidth is 0-20 MHz
- 4. These power converters require a minimum output loading to maintain specified regulation.
- Operation under no-load conditions will not damage these modules; however, they may not meet all specifications listed.
- 6. All DC/DC converters should be externally fused at the front end for protection.
- 7. Other input and output voltage may be available, please contact factory.
- 8. Specifications subject to change without notice.

Input Specifications

Parameter	Model	Min.	Тур.	Мах.	Unit
Start Voltage	24V Input Models	7	8	9	
	48V Input Models	14	16	18	VDC
Under Voltage Shutdown	24V Input Models			8.5	VDC
	48V Input Models			16	
Reverse Polarity Input Current				1	Α
Short Circuit Input Power	All Models			3000	mW
Input Filter			Pi F	ilter	

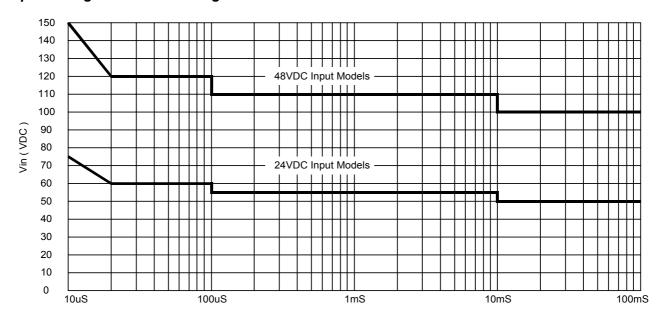
Output Specifications

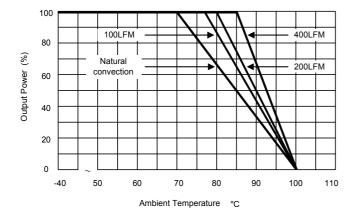
Parameter	Conditions	Min.	Тур.	Мах.	Unit	
Output Voltage Accuracy			±0.5	±2.0	%	
Output Voltage Balance	Dual Output, Balanced Loads		±0.5	±2.0	%	
Line Regulation	Vin=Min. to Max.		±0.1	±0.5	%	
Load Regulation	Io=10% to 100%		±0.5	±1.0	%	
Ripple & Noise (20MHz)			50	80	mV P-P	
Ripple & Noise (20MHz)	Over Line, Load & Temp.			100	mV P-P	
Ripple & Noise (20MHz)				15	mV rms	
Over Power Protection		110	250	350	%	
Transient Recovery Time	25% Load Step Change		300	500	uS	
Transient Response Deviation	- 25% Load Step Change		±3		%	
Temperature Coefficient			±0.01	±0.02	%/°C	
Output Short Circuit	Continuous					

General Specifications

Parameter	Conditions	Min.	Тур.	Мах.	Unit
Isolation Voltage	60 Seconds	1500			VDC
Isolation Voltage Test	Flash Tested for 1 Second	1650			VDC
Isolation Resistance	500VDC	1000			$M\Omega$
Isolation Capacitance	100KHz,1V		350	550	рF
Switching Frequency			450		KHz
MTBF	MIL−HDBK−217F @ 25°C, Ground Benign	1000			K Hours

Capacitive Load

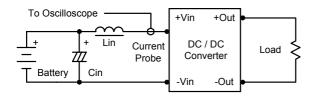

Models by Vout	3.3V	5V	12V	15V	±5V#	±12V #	±15V #	Unit
Maximum Capacitive Load	470	470	100	100	100	100	100	иF


For each output

Input Fuse Selection Guide

24V Input Models	48V Input Models
1000mA Slow-Blow type	750mA Slow-Blow type

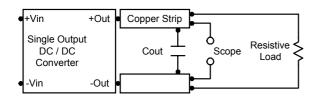
Input Voltage Transient Rating

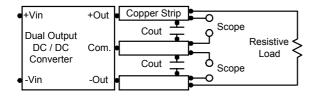

Derating Curve

Test Configurations

Input Reflected-Ripple Current Test Setup

Input reflected—ripple current is measured with a inductor Lin (4.7uH) and Cin (220uF, ESR < 1.0 Ω at 100 KHz) to simulate source impedance.


Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0–500 KHz.



Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47uF ceramic capacitor.

Scope measurement should be made by using a BNC socket, measurement bandwidth is 0–20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

Design & Feature Considerations

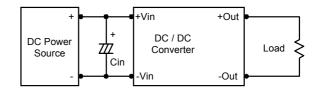
Maximum Capacitive Load

The MIW4100 series has limitation of maximum connected capacitance at the output.

The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time.

The maximum capacitance can be found in the data sheet.

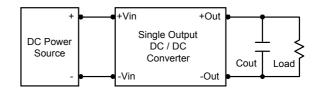
Overcurrent Protection

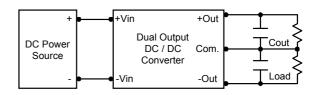

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current–limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.

In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.

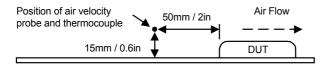

Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 4.7uF for the 24V input devices and a 2.2uF for the 48V devices.

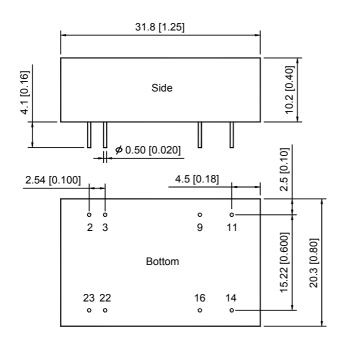


Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance.

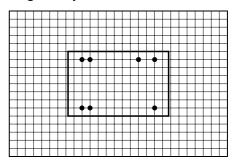
To reduce output ripple, it is recommended to use 3.3uF capacitors at the output.

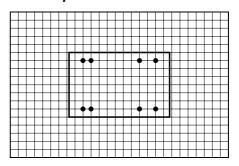



Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 90°C.

The derating curves are determined from measurements obtained in an experimental apparatus.


Mechanical Dimensions


Tolerance Millimeters Inches X.X±0.25 X.XX±0.01 X.XX±0.13 X.XXX±0.005 Pin ±0.05 ±0.002

Connecting Pin Patterns Top View (2.54 mm / 0.1 inch grids)

Single Output

Dual Output

Pin Connections

Pin	Single Output	Dual Output
2	-Vin	-Vin
3	-Vin	-Vin
9	No Pin	Common
11	NC	-Vout
14	+Vout	+Vout
16	-Vout	Common
22	+Vin	+Vin
23	+Vin	+Vin

NC: No Connection

Physical Characteristics

31.8×20.3×10.2 mm Case Size 1.25×0.80×0.40 inches

Case Material : Metal With Non-Conductive Baseplate

Weight : 17.3g

Flammability : UL94V-0

The MIW4100 converter is encapsulated in a low thermal resistance molding compound that has excellent resistance/electrical characteristics over a wide temperature range or in high humidity environments.

The encapsulant and unit case are both rated to UL 94V-0 flammability specifications. Leads are tin plated for improved solderability.